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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
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States Government or any agency thereof.

Although this product represents the work of professional scientists, the Utah Department of
Natural Resources, Utah Geological Survey, makes no warranty, express or implied, regarding
its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological
Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or
consequential damages with respect to claims by users of this product.



ABSTRACT

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions
for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a
25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of
low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side
ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants
having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where
chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury

capture where carbon in fly ash is used to reduce mercury emissions.
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INTRODUCTION

Background

Switching to low-mercury-emission coal may be an effective strategy to comply with
impending regulations that are intended to reduce mercury emissions from electric utilities. For
example, despite proven emission control technology, burning low-sulfur coal is the most
popular method to reduce sulfur emissions. Because technology to reduce mercury emissions is
less certain, burning low-mercury coal is a likely method to reduce mercury emissions. Like
sulfur, the amount of mercury in U.S. coal shows substantial geographic variation. However,
unlike sulfur, mercury emissions also vary with the abundance of other elements in the coal, such
as chlorine and sulfur, which influence mercury capture by emission control technologies.
Consequently, mercury emission factors vary according to the relative abundance of several
elements in the coal, and are specific to different emission control technologies.

This project uses Geographic Information System technology (ArcView GIS) to create
detailed maps to show where U.S. coal with low-mercury and acid-gas emissions might be
found. The map series will show geographic variation of mercury, chlorine, and sulfur in coal,
as well as the mercury emission penalty, calculated for data aggregated by U.S. county-of-origin
using equations specific to power plants classified by boiler type and flue gas emission controls.
Removing mercury from flue gas is a technically complex task — different technologies will be
required for different coals. Maps showing the geographic variation of mercury and acid-gas
emission factors for U.S. coal will help locate the best coal for each technology and identify the

best technology for each coal.



Coal quality data used in this study were described in a previous report (Quick and
others, 2004a). Briefly, these data were selected from five data sets and include: 19,507 FERC
423 data records (USEIA, 2003a), 25,818 ICR data records (USEPA, 2003), 5602 CTRDB data
records (USEIA, 2003b), 5045 COALQUAL data records (Bragg and others, 1997), and 73
PSU-DOE data records (Anonymous, 1990; Davis and Glick, 1993; Scaroni and others, 1999).

Additional data considered in this report are from CEA (2004) and USMSHA (2004).

Scope
This report describes the progress made during the third six-month period of this 24-
month project (figure 1). Results from task 6, and observations made while preparing a

presentation (Quick and others, 2005) are described and discussed.

| 2003 | 2004 | 2005 |
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Figure 1. Schedule of project tasks.



EXECUTIVE SUMMARY

Revised, draft maps showing the geographic variation of mercury and acid-gas emission
factors for U.S. coal by county of origin are presented, together with associated coal assay data.
Three revisions to the maps presented in our August report (Quick and others, 2004b) include the
following:

e ICR 2 coal assay data were identified for Panola/Rusk and Titus Counties Texas; although

these records lack county-of-origin names, they correspond to a utility that burns local coal.

e New information suggests that the mercury assay values listed in the ICR 2 data for most
coals from the Gulf Coast province are erroneously low. Where possible, new mercury

values have been estimated for affected counties.

e Maps showing technology-specific mercury emission potentials were revised; the revised
maps are now based on the average result of three predictive equations, rather than the

result from just one equation.
Using the average mercury emission factors obtained from three equations, county-specific coal
assay data, and estimates of 1999 county coal production, mercury capture is estimated for five
existing emission control technologies (hot- side electrostatic precipitator [hESP], cold-side
electrostatic precipitator [cESP], hot-side electrostatic precipitator with wet flue-gas
desulfurization [hESP/FGD], cold-side electrostatic precipitator with wet flue-gas desulfurization
[cESP/FGD], and spray-dry adsorption with fabric filter [SDA/FF] controls). A comparison of
in-ground coal mercury to produced coal mercury was also made. Finally, empirical data from
the Canadian Electricity Association (CEA, 2004) were used to evaluate the negative correlation

between coal sulfur content and mercury capture. The results indicate:



Selection of low-mercury coal is a reasonable way to reduce mercury emissions from units
equipped with hESP, cESP, or hESP/FGD controls, whereas selection of coal with high-
chlorine content is a better option for units with cESP/FGD, or SDA/FF controls.

Blending high- and low-chlorine coals to an optimum level between 500 and 1000 ppm
chlorine should provide a net reduction of mercury emissions for units with cESP/FGD, or

SDA/FF controls.

Although coal shipped to utilities contains about 25% less mercury than the in-ground
resource, this difference is not geographically uniform. With the notable exception of
Powder River Basin (PRB) coal from Wyoming, the mercury content of commercial coal
from the western U.S., as well as Ohio, northern Pennsylvania, and the Gulf Coast, is
similar or greater than the in-ground coal resource. Coal washing might be an effective

mercury mitigation strategy in these areas.

Selection of low-sulfur coal may improve mercury capture where carbon in fly ash is used

to reduce mercury emissions.



EXPERIMENTAL

Work accomplished during this reporting period included data evaluation and revisions to
draft maps. Related observations made while preparing for a conference presentation (Quick and

others, 2005) are discussed.

Data Evaluation

Comparison of ICR 2 county origins, with 1999 county coal production (USEIA 2003a;
USMSHA, 2004) showed that not all coal-producing counties are represented in the ICR data.
This deficiency was especially acute for counties in Texas. Accordingly, 85 ICR 2 data records
originating from the Martin Lake power station (but lacking county-of-origin information) were
assigned to Panola and Rusk Counties, Texas. Likewise, 87 records from the Monticello station
were assigned to Titus County. Notably, the Monticello records may include coal originating

from nearby Hopkins County.

Comments to the USEPA related to the proposed mercury reduction rule (McCall, 2004;
Eutizi, 2005; Glacken, 2005) suggest that the mercury values reported in the ICR 2 data for most
Gulf Coast coal are erroneously low. Accordingly, average mercury values, from ICR 3 testing’
or newly reported values (McCall, 2004; Eutizi, 2005), were used to estimate county-average
mercury values for coal from Panola, Titus, Atascosa, Freestone, Milam, and Robertson
Counties, Texas. Mercury values for Leon County, Texas, as well as Red River and De Soto

Parishes, Louisiana, have not been revised and are probably too low.

" The ICR 3 data originate from measurements of atmospheric mercury emissions from about 80 selected U.S.
power plants (USEPA, 2003). The data show measured mercury emissions and mercury capture observed during
three, multiple hour intervals for each plant, and are complementary to the more comprehensive ICR 2 coal assay
data.



Examination of coal supplier names listed in the ICR data identified nine records for coal
from Washington County, Illinois, and seven records from Schuylkill County, Pennsylvania;
these counties are now represented in the selected ICR 2 data. Table 1 lists the remaining
counties missing from the selected ICR 2 data, together with their 1999 coal production. The

missing counties represent 15.7 million tons, which is less than 2% of 1999 U.S. coal production.

Table 1. Coal production from counties not represented in the ICR 2 data
selected for this study.

State County 1999 production (tons)
Alabama Bibb 44,500
Alabama Cullman 35,700
Alabama Marion 35,700
Alabama Winston 338,500
Arkansas Johnson 14,600
Colorado Fremont 242,200
Colorado La Plata 245,700
lllinois Christian 72,200
Indiana Dubois 72,800
Indiana Spencer 204,400
Kentucky Knox 506,100
Mississippi Choctaw 18,400
Missouri Barton 73,000
Ohio Gallia 220,600
Ohio Monroe 489,600
Ohio Muskingum 663,100
Ohio Noble 689,800
Ohio Stark 316,400
Oklahoma Craig 194,100
Pennsylvania Carbon 39,300
Pennsylvania Clarion 418,100
Pennsylvania Jefferson 1,119,100
Pennsylvania Lawrence 84,800
Pennsylvania Sullivan 47,100
Pennsylvania Venango 91,600
Texas Hopkins 2,126,100
Texas Webb 235,000
Virginia Tazewell 2,062,700
West Virginia McDowell 4,698,900
West Virginia Mineral 48,500
West Virginia Tucker 172,423
Wyoming Sheridan 76,400




Revisions to Draft Maps

Various groups have used the ICR 3 utility emission data to derive equations that predict
mercury capture for existing emission control technologies (Chu and others, 2000; Laumb and
others, 2000; Roberson, 2002; ENSR, 2003; SAIC, 2003; AEMS, 2004). The equations use coal
chlorine, ash, Btu, or sulfur values as independent variables to predict mercury capture. During
the last reporting period, we applied selected equations to county-average coal assay data to
create five technology-specific maps showing potential mercury emissions from U.S. coal.
Because we lacked an independent utility emission data set to verify the selected equations, our
selection of a single equation for each control technology was unavoidably arbitrary.

During the previous reporting period we also compared different equations that predict
mercury emissions from units with SDA/FF emission controls. These equations all had similarly
high reported r* values, they all predicted increasing capture with increasing coal chlorine, but
they also predicted different results when applied to the same, county-average coal assay data.
Accordingly, all of the predictive equations originally considered in this study were re-examined
to check for possible transcription errors, and to verify the reporting basis of the independent
variables. The result of this effort is shown in table 2, which lists three different equations for
each of the (5) emission control technologies examined in this study. Figures 1, 2, 3, 4, and 5
compare the mercury capture predicted by these equations for each control technology. These
results extend our earlier finding of similar r2 values, similar trends, but different results, to
include all five of the control technologies examined in this study (cESP, hsESP, hESP/FGD,

cESP/FGD, and SDA/FF controls).



Table 2. Technology-specific equations that predict mercury capture.

TECHNOLOGY Equation to Predict Mercury Capture (100% capture = 1) 2 n
Reference
cESP
C/ppm dry
Roberson (2002) 0.1133 Ln | ———————|-0.2987 053 28
1.998 19001y

model 2, SAIC (2003) 1- Exp( —7.33E2 - 3.309 ( Ibs CI per 102Btu) ) 047 12
model 1, SAIC (2003) 1- Exp (1.6374 —0.18693Ln(lbs CI per 10" Btu)) 038 12
cESP/FGD

Roberson (2002)  0.1157 Ln ( Clpy.ar )— 0.1438 070 11
model 1, SAIC (2003) 1-Exp (1.8529 -0.27149 Ln ( Ibs CI per 10"Btu) ) 0.74 8

100 CI
model 3, SAIC (2003) 1- Exp | - 0.2559 — 2.3343E 5| — ™9 073 8
wt.%,dry
hESP
model 1, SAIC (2003) 1-Exp ( 0.9451-9.995E2Ln( Ibs CI per 102 Btu) ) 042 7
100 CI
model 3, SAIC (2003) 1-Exp | 0.0611—2.169E ~8| ——22mY. 054 7
wt.%,dry
ENSR (2003) 1-Exp (0.12124 —1.021E7*( Clpmary ) ) 039 9
hESP/FGD
model 1, SAIC (2003) 1-Exp (2.7019 -0.29952 Ln( Ibs CI per 10?Btu) ) 0.75 6
model 2, SAIC (2003) 1-Exp ( -3.59E2 ~9.358E°( Ibs Cl per 10Bw)) 067 6
100 CI
model 4, SAIC (2003) 1-Exp | 2.5618 — 0.268Ln| —— 2™ 9. 042 6
wt.%,dry

SDA/FF

Roberson (2002)  0.2854 Ln ( Cl 4, )—1.1302 091 10

model 1, SAIC (2003) 1— Exp (10.7111-1.22628 Ln ( Ibs CI per 10" Btu) ) 089 10
ENSR (2003) 1-Exp (-0.19992 - 2.164E( Cl ) ) 094 10

Notes,

cESP: cold-side Electrostatic Precipitator;

cESP/FGD: cold-side Electrostatic Precipitator with wet Flue Gas Desulphurization;
hESP: hot-side Electrostatic Precipitator;

hESP/FGD: hot-side Electrostatic Precipitator with wet Flue Gas Desulphurization;
SDAJ/FF: Spray Dry Adsorption with Fabric Filter.
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Figure 2. Three equations predict
different amounts of mercury capture
for SDA/FF technology when applied to

data for 161 U.S. counties.

Notes, SDA/FF: Spray Dry Adsorption,
Fabric Filter; SAIC (2003), ENSR
(2003), and Roberson (2002)
equations listed on table 2 (this report);
ICR 2 county-average coal assay data
(appendix); results for six counties with
>2000 ppm chlorine and one county
with <50 ppm chlorine are not shown;
results limited to 2% minimum capture

and 98% maximum capture.

Figure 3. Three equations predict
different amounts of mercury capture
for cESP/FGD technology when

applied to data for 161 U.S. counties.

Notes, cESP/FGD: cold-side
Electrostatic Precipitator, wet Flue Gas
Desulphurization; SAIC (2003), and
Roberson (2002) equations listed on
table 2 (this report); ICR 2 county-
average coal assay data (appendix);
results for six counties with >2000 ppm
chlorine and one county with < 50 ppm
chlorine are not shown; results limited

to 2% minimum capture and 98%

maximum capture.
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Figure 4. Three equations predict
different amounts of mercury capture
for hAESP/FGD technology when

applied to data for 161 U.S. counties.

Notes, hESP/FGD: hot-side
Electrostatic Precipitator, wet Flue Gas
Desulphurization; SAIC (2003)
equations listed on table 2 (this report);
ICR 2 county-average coal assay data
(appendix); results for six counties with
>2000 ppm chlorine and one county
with < 50 ppm chlorine are not shown;
results limited to 2% minimum capture

and 98% maximum capture.

Figure 5. Three equations predict
different amounts of mercury capture
for cESP technology when applied to

data for 161 U.S. counties.

Notes, cESP: cold-side Electrostatic
Precipitator; SAIC (2003), and
Roberson (2002) equations listed on
table 2 (this report); ICR 2 county-
average coal assay data (appendix);
results for six counties with >2000 ppm
chlorine and one county with < 50 ppm
chlorine are not shown; results limited
to 2% minimum capture and 98%

maximum capture.
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The similar statistical significance but different county-specific results for the equations
listed in table 2, coupled with the lack of a verification data set, makes selection of the best
equation for each technology group largely arbitrary. Lacking objective criteria to select a single
best equation, we chose to use the average result obtained from all three equations.

As might be expected, using the average result from three equations (rather than just
one), adding data for more counties, and correcting erroneously low-mercury values for Gulf
Coast coal, changed the maps being made for this project. Figures 7 through 16 show the revised

draft maps, which more closely correspond to the final maps that are currently being constructed.
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RESULTS AND DISCUSSION

Revised draft maps showing the potential mercury and acid-gas emissions from coal
combustion by U.S. county-of-origin were made using selected ICR 2 coal quality data, and the
average result from three, technology-specific equations that predict mercury capture (table 2).
This section discusses the decision to use the average result from three equations (rather than just
one) as well as strategies to reduce mercury emissions using existing technology. We also
examine the effectiveness of existing technologies to control mercury emissions, and consider
why coal sulfur appears to reduce mercury capture. Finally, we examine the significance and

potential of pre-combustion controls to reduce mercury emissions.

Selecting the Best Equation to Predict Mercury Capture

Table 2 lists three equations that predict mercury capture for each of five different
existing control technologies. The equations were all derived by regression analysis on the ICR
3 stack emission data (USEPA, 2003), and use various measures of coal quality (chlorine, Btu,
and sulfur values) as independent variables. Although the technology-specific equations show
similar correlations and trends, results sometimes differ when they are applied to the same
county-average coal quality values. Lacking objective criteria to select a single best equation
from those listed in table 2, we used the average result obtained from all three equations.

Clearly, our decision to use all three equations, rather than just one, could be considered
arbitrary. However, using three equations should reduce extrapolation error when an equation is
applied to assay values that are outside the range of ICR 3 values that these regression equations
were made from. For example, figure 6 shows that the different equations predict substantially
different results for high-chlorine coal burned units with hESP technology. With one exception

(Cliffside unit 1), relatively low-chlorine coal was burned in ICR 3 units equipped with this
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technology. Consequently, the validity of the hESP-specific equations is uncertain for high-
chlorine coal. Nonetheless, given the divergent results for high-chlorine coal shown in figure 6,
using the average result from all three equations clearly avoids large errors necessarily associated
with at least one of the equations.

Admittedly, there are other useful and significant equations that are not included in table
2 (Chu and others, 2000; Laumb and other 2000; AEMS 2004). However, the selection of
equations for table 2 was not wholly arbitrary. The selection was instead a compromise that
required similar technology classes, and favored high r* values, diverse authorship, and different
independent variables. Selecting three (rather than two, four, or more) equations for each
technology group was likewise a compromise. This convention simplified spreadsheet

calculations and allowed for the inclusion of convex, concave, and linear equation forms.

Comparison of Existing Technologies: Implications for Mercury Control

Figure 17 compares the average technology-specific mercury capture calculated for 162
U.S. counties using the three equations listed in table 2 for each technology control class. Note
that mercury capture increases as coal chlorine increases for each control technology. This trend
is particularly noteworthy for SDA/FF and cESP/FGD technologies, where capture rapidly
increases up to about 500 ppm chlorine, but only modestly increases above 1000 ppm chlorine.
Thus, blending a low-chlorine coal with a high-chlorine coal to an optimum level between 500
and 1000 ppm chlorine, should result in a net reduction of mercury emissions for coal burned in

units equipped with SDA/FF or cESP/FGD emission controls.
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Figure 17. Mercury capture predicted for 162 U.S. counties increases with increasing coal chlorine for
five existing control technologies. Mercury capture is the average result of three equations for each

control technology applied to county-average, ICR 2 coal assay values. The equations are listed in table

2 (this report); county-average ICR 2 assay values are listed the appendix.

Units equipped with hESP/FGD, cESP/FGD or hESP emission controls show relatively
poor mercury capture. Absent effective mercury-specific controls, selection of low-mercury coal
would be a good mercury control strategy for these units.

Weighting the county-specific results shown in figure 17 by county production tonnage
allows calculation of the average mercury emissions, together with the average percent
reduction, for each post-combustion technology. Likewise, the effectiveness of pre-combustion

technology can be calculated by comparing in-ground coal mercury with commercially shipped

24



coal mercury and weighting the results by county production. Table 3 shows the results of these

calculations.

Table 3. Comparison of mercury control technologies, by U.S. county-of-origin.

% Mercury
Technology Trillion Btu ' Ibs Hg/10" Btu  Reduction
None (In-ground coal, . ~110 .
COALQUAL data)® '
Counties with no mercury
ore. reduction (ICR 2 data) 5,931 1.2 -
Combustion Washing/Mining Practice
(ICR 2 data)® 11,335 6.3 ~57%
No data (counties without 1,809 2 2
COALQUAL or ICR 2 data)
None (delivered coal) 19,047 8.3 —
hESP 1,769 7.5 9%
Post- cESP 10,260 6.3 24%
Combusti
OmbUsion 1 EsP/FGD 565 6.2 25%
cESP/FGD 3,579 34 59%
SDA/FF 511 3.1 63%

' Amount of coal, expressed as coal Btu content; post-combustion values from Chu and others
(2000).

2 The 11 Ib Hg/10" Btu value for the total U.S. in-ground coal resource was calculated using state-
average COALQUAL Hg values, and weighting by estimated coal resource (tonnage) values from the
USEIA (2000) 1997 vintage, demonstrated reserve base. This value (and the derived 57% mercury
reduction due to washing and mining practice) will likely change when the demonstrated reserve base
estimate is updated.

® Counties where the mercury content of the in-ground coal is more than 2 Ibs Hg/1012 Btu greater
than the mercury content of commercial coal shipped from that county.

Several caveats apply to table 3. First, mercury reductions listed for cESP/FGD and
SDA/FF technologies are likely minimum values because they indicate the fractional emissions
expected if all U.S. coal were burned in these technology classes, rather than the coals that are

currently burned. Many of these units burn coal blends originating from several counties. As
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noted above, the optimal mercury capture for these technologies occurs where the coal contains
between 500 and 1000 ppm chlorine. Given that the tonnage-weighted average chlorine content
of U.S. coal is ~530 ppm, coal blends are more likely to approach this optimal value than single-
sourced coal.

Table 3 shows that in-ground U.S. coal contains about 11 lbs Hg/10'> Btu. This value is
less certain than the mercury content of coal delivered to power plants during 1999 included in
the ICR 2 data set. For example, weighting COALQUAL mercury values aggregated by U.S.
state (excluding Alaska), by the USEIA (2000) Demonstrated Reserve Base tonnage estimates
for these states shows an average 10.8 lbs Hg/1012 Btu. However, where average COALQUAL
mercury values for counties listed in the ICR data set are weighted by coal production tonnage,
the result is 11 Ibs Hg/10' Btu.

Another limitation of values listed in table 3 relates to the likely co-reduction of coal
sulfur due to coal mining and coal washing practice. As noted below, coal sulfur decreases post-
combustion mercury capture. Consequently, the technology-specific, post-combustion mercury
reductions listed in table 3 may increase if the sulfur content of commercial U.S. coal continues

to decline (Quick and others, 2004).

The Relationship Between Coal Sulfur and Mercury Capture

Figure 17 shows that mercury emissions from SDA/FF controls are exclusively correlated
with chlorine whereas mercury emissions predicted for the other technologies are more variable.
The scatter shown in figure 17 for cESP/FGD, hESP/FGD, cESP, and hESP technologies is
attributed to coal sulfur, which is a factor in one or more of the respective equations for these

technologies (table 2), but not used in the SDA/FF equations. Notably, in every equation where
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sulfur is an independent variable (table 2), mercury capture is predicted to decline with
increasing coal sulfur.

The equations listed in table 2 clearly show the consistently negative effect of coal sulfur
on mercury capture. The explanation for this effect is less obvious. Hocquel and others (2001)
offer two explanations for the negative effect of sulfur on mercury capture; both reduce the
amount of Cl, available for mercury oxidation. The first inhibits the heterogeneous conversion
of HCl to reactive Cl, by sulfation of metal oxides that would otherwise catalyze this conversion.
The second indicates that gaseous SO; in the presence of water vapor can homogenously reduce
Cl, to less-reactive HCI and by-product SO;. A mechanistic model for mercury capture by fly-
ash carbon (Olson and others 2003) suggests that sulfuric acid (from oxidation of flue-gas SO,)
limits mercury capture by filling Hg binding/reaction sites on the carbon surface.

Alternately, the negative effect of coal sulfur on mercury capture may simply relate to
higher flue-gas temperatures required to avoid corrosion of the ductwork from H,SO,4 when
burning high-sulfur coal. Meij and others (2002) attribute the greater mercury capture by ESP
controls on power plants in the Netherlands, compared to those in Germany and the U.S., to
lower flue-gas ESP temperatures in the Netherlands power plants (~120 °C), which burn
comparatively low-sulfur coal. The median temperature for cold-side ESP units included in the
ICR 3 data set of U.S. power plants is about 160 °C, whereas Meij and others (2002) suggest that
oxidized mercury, present as HgCl,, does not condense on fly ash above about 140 °C.

Empirical data from Canadian Electricity Association members (CEA, 2004) also show a
negative correlation between coal sulfur on mercury capture. The relationship (figure 18) is
strongest where fly-ash carbon exceeds five percent (and chlorine is coincidentally high). This

relationship is consistent with the mechanistic model suggested by Olson and others (2003)

27



where sulfur fills reactive sites on fly-ash carbon. Their explanation may also explain why sulfur
is not a significant predictor of mercury capture for units equipped with SDA/FF technology; in
this instance, gaseous flue-gas sulfur is converted to a non-reactive solid (sulfate) before it

arrives at the particulate filter, where effective mercury capture by fly-ash carbon presumably

occurs.
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Figure 18. Decreasing mercury capture with increasing coal sulfur. Data points show weekly averages
(CEA, 2004) observed for two units equipped with cESP emission controls where fly-ash carbon exceeds
5% (average 11%). Mercury capture was estimated after Meij and others (2002) using coal and fly-ash
mercury values, and assuming an 80:20, fly ash:bottom ash fractionation. Two data points greater than

100% capture are not shown.

In this section we have suggested that mercury capture by carbon in fly ash may be
improved by reducing the amount of sulfur in the feed coal. This effect complements the likely

reduction of mercury in the coal when the sulfur content of coal is reduced (Quick and others,
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2003). Thus, selection of low-sulfur coal has two likely effects: (1) reducing the amount of

mercury in the feed coal, and (2) improving post-combustion mercury capture.

In-Ground Coal Mercury Compared to Commercial Coal Mercury

Direct comparison of COALQUAL data records (in-ground coal) with ICR 2 data records
(commercial coal) showed that coal delivered to utilities during 1999 has about half as much
mercury as the in-ground coal resource (Quick and others, 2003). This difference was attributed
to preferential mining of relatively low-mercury coal, and coal washing. Toole-O’Neil and
others (1999) note that washing reduces coal mercury levels by about 35%. Restricting the
comparison to counties where both COALQUAL and ICR data are available, and weighting the
county-average mercury values by coal production tonnage, shows that the in-ground coal
resource averages about 11 Ibs Hg/10'2 Btu, whereas commercial coal deliveries during 1999
averaged about 8.3 Ibs Hg/10'>Btu. Perhaps more significantly, this difference is not
geographically uniform. For example, figure 19 shows that coal produced from the northern
Appalachians and Gulf Coast regions typically has more mercury than expected from the
mercury content of the in-ground coal. The reason for these increased mercury levels is
uncertain. Possibly, the increased mercury levels result from dilution of mined coal with either
surrounding, high-mercury country rock or included, high-mercury rock partings. If so, coal

washing or selective mining might be effective mercury reduction strategies in these areas.
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Figure 19. Commercial coal from some areas has more mercury than what might be expected based on
in-ground coal assays (COALQUAL data). Although the mercury content of commercial coal delivered to
utilities during 1999 (ICR 2 data) was about 25% less than the actively mined, in-ground coal resource

(COALQUAL data), this difference is not geographically consistent.

Areas where mined coal contains more mercury than the in-ground coal may be good
places to consider pre-combustion mercury reduction strategies. Comparing the mercury content
of mined coal with the mercury content of in-ground coal has more immediate significance
because it shows the significance of pre-combustion mercury reduction strategies (selective

mining and coal washing). Indeed, the mercury content of U.S. coal delivered to the power plant
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during 1999 contained, on average, 2.8 Ibs Hg/10'> Btu less mercury than the in-ground coal

resource. This 25% mercury reduction is significant.

CONCLUSIONS

We have revised draft maps showing potential sulfur, chlorine, and mercury emissions
for U.S. coals by county-of origin, and have begun construction of the final maps. Although
county-average ICR 2 mercury values for most Gulf Coast coal have been increased (in
recognition of systematic assay errors), mercury values for Leon County Texas, as well as
DeSoto and Red River Parishes Louisiana, have not been adjusted and are probably too low.
Results from this reporting period suggest the following:

o Selection of coal with low mercury content may be an effective control strategy for
units equipped with hESP/FGD, cESP, or hESP controls, whereas selection of high-
chlorine coal is indicated for units with cESP/FGD or SDA/FF controls.

. Blending to an optimum level between 500 and 1000 ppm chlorine may be an
effective mercury control strategy for units equipped with SDA/FF or cESP/FGD
controls.

o Flue-gas sulfur may reduce mercury capture by carbon in fly ash.

. Coal washing or selective mining might be an effective mercury reduction strategy,

especially for coals from the northern Appalachians or Gulf Coast.
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ASTM
Btu

Btu/lb m,mmf

Btupe

cESP
ESP

FGD

FF

hESP

Ibs C1/10° Btu

Ibs Hg/10'" Btu

Ibs Hg/TW-h

GLOSSARY

American Society for Testing and Materials.

gross British thermal units per pound coal on a moist, whole-coal basis as
reported from the laboratory(multiply by 0.002326 to convert to MJ/kg).

British thermal units per pound coal, on a moist, mineral-matter-free basis
100(Btu/Ib —50 Sulfur )
(100 - [1.08 Ash—0.55S|)
ash and Btu/lb values are on a moist, whole-coal basis.

, where the sulfur,

calculated as, Btu /b, pms =

Net British thermal units per pound coal, reported on a whole-coal, moist
basis. Also called the lower heating value, this calculated value is less
than the Btu value reported from the laboratory in proportion to the
amount of water vapor in gaseous combustion products. It can be
calculated as = Btu - 92.7(0.1119Moisture + Hydrogen) where both Btu and

hydrogen are reported on a moist basis, but hydrogen exlcudes hydrogen
in coal moisture.

cold-side Electrostatic Precipitator. (see ESP)

Electrostatic Precipitator. Called a cold-side ESP (cESP) when installed
downstream of the air pre-heater (where temperatures typically range from
140 to 160 °C) and called a hot-side ESP (hESP) when installed before the
air pre-heater (where temperatures typically range from 350 to 450 °C).

wet Flue Gas Desulfurization. An emission control technology designed
to remove SO2 from flue gas, usually installed after a particulate
collection device; sulfur is removed as flue gas passes through an aqueous,
alkaline solution (typically made with lime or limestone).

Fabric Filter. An emission control device, also called a baghouse, that
removes solid particles from combustion flue gas.

hot-side Electrostatic Precipitator. (see ESP)

9 .
Pounds of chlorine per billion Btu = 107 ppmChiorine

Btu 108
chlorine values are on the same reporting basis (for example, both dry

basis or both moist basis. Multiply by 0.430 to convert to kg CI/TJ.

, where Btu and

10'2 N ppm Mercury
Btu 10°
mercury values are on the same reporting basis (for example, both dry
basis or both moist basis). Multiply by 0.430 to convert to kg Hg/PJ.

Pounds of mercury per trillion Btu = , where Btu and

Pounds mercury per terawatt hour, which is calculated in this report as:
B 10'2 . ppm Mercury
Btu, 10°

x10.26 where both Btu,. and mercury are reported
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Ibs S/10° Btu

COALQUAL
CTRDB

daf

DOE

EIA

EPA
FERC
FERC 423

ICR

ppm
PRB

PSU
SDA

UGS
USGS

on a moist basis, and the coefficient, 10.26, corresponds to a nominal heat
rate of 35% (exactly 9,750 gross Btu/kilowatt-hour, which is
approximately 10,260 net Btu/kilowatt-hour).

10° . YeSulfur
Btu 100
values are on the same reporting basis (for example, both dry basis or both
moist basis). Multiply by 0.430 to convert to kg S/GJ.

Pounds of sulfur per million Btu = , where Btu and sulfur

Coal quality database from the U.S. Geological Survey.

Coal Transportation Rate Data Base from the U.S. Energy Information
Administration.

A dry, ash-free reporting basis, usually noted as a subscript associated
with a coal assay value. Dry, ash-free basis values are obtained by
multipling, moist, whole-coal assay values by the factor:

100
(100 — Ash — Moisture)

whole-coal basis.

, where ash and moisture values are on a moist,

U.S. Department of Energy.

U.S. Energy Information Administration.
U.S. Environmental Protection Agency.
Federal Energy Regulatory Commission.

A monthly data set listing the cost and quality of coal delivered to U.S.
power plants.

Information Collection Request. Data collected during 1999 by the EPA
to assist the development of any rules to limit mercury emissions from
coal-fired utilities. The part 2 data list coal assay data for coal shipments,
the part 3 data list measurements of mercury in stack gas.

parts per million. Equals pg/g or mg/kg.

Powder River Basin. Refers to coal produced from Campbell, Converse,
and Sheridan Counties, Wyoming as well as Big Horn and Rosebud
Counties, Montana.

Pennsylvania State University.

Spray Dry Adsorption. An emission control technology designed to
remove SO2 from flue gas, gaseous sulfur is converted to a solid sulfate
when an alkaline mist is injected into the flue gas; the solids are then
collected in a particulate filter. Usually used for low-sulfur western coal.

Utah Geological Survey
United States Geological Survey.
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